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I. Self-paced learning
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Alternative optimization strategy (AOS) commonly utilized to solve the SPL problem

It is still unclear where this SPL iteration converges and why SPL is robust in solving
the learning problems especially with highly noisy data.
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the loss function contained in this implicit SPL objective is closely
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|. majorization minimization (MM) algorithm*
majorize =
AR AL

let Q(w|w") denote a real-valued function of w whose form depends on w*. The
function Q(w|w®) is said to majorize a real-valued function F(w) at the point w*
provided

Majorization Step: Substitute F{w) by a ‘surrﬂgate function Q(w|w*) such that:
F(w) < Q(w|w")

with equality holding at w = w*,
Minimization Step: Obtain the next parameter estimate w**! by solving the following minimization problem:

w*! = arg min Q (w|w®).

*Hunter D R, Lange K. A tutorial on MM algorithms. Am Stat[J]. American Statistician,
2004, 58(February):30-37.



I. SP-regularizer

Definition 3.1 (SP-regularizer). Suppose that v is a weight variable, ¢ is the loss, and A is the age parameter. f{v, 1) is called
a self-paced regularizer, if

1. filv. A) is convex with respect to v € [0, 1]:

12, v*(e A) s monotonically decreasing with respect to £,Jand it holds that lim,_.pv*(¢, A) = 1, limy_. o V* (£, 3) = 0;
3. v*(¢, A) is monotonically increasing with respect to A, and it holds that lim; _, . v*(¢, A) < 1, lim;_ o v* (¢, A) = 0;

where

ve(e, A) =.argyrel?grll]v£+f{y+l). (3)
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L‘V(ﬁ_ I)' otherwise.




I. HEQR ¥ (Implicit SPL obj.) REIR
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Q. (Wlw™) =F (£(W*)) + v (£(W*), L) (£(w)—£(wW")).

If fis concave and differentiable (B]f1) , thenitis bounded above by its first-order
Taylor approximation*

F (£(w)) = Qi (w|w™)
ABREIEM: AOSKAMSPLEM FMMELER i LF()

*Varian H R. Microeconomic analysis /[M]// Microeconomic analysis. Norton, 1984:1 -
28.



|. MM

Majorization step: To ni:rtain each Qj'i”(wlwk}. we Dnl;r need -tn ce-llculate vE(£;(wk), A)
under the corresponding SP-regularizer f(v;, A):

vt (£: (W), 1) = min v;¢;(W*) + f(v;, A).

vie[0,1]

This exactly complies with the AOS step in updating v in (1) under fixed w.
Minimization step: We need to calculate the following:

wl = arg min ZFA (£:(W5)) + 17 (€;(WH), 1) (£;(w)—£;(WH))
i—1

= arg mJn Zn: v (6;(W5), L) (w),
i=1

which is exactly equivalent to the AOS step in updating w in (1) under fixed v.



I . Conclusion

SPL is a MM algorithm of the implicit SPL objective Y.I*; F;(£;(w)) with the
Implicit SPL loss Fy (£ (w))

Various off-the-shelf theoretical results of MM can then be readily
employed to explain the properties of such SPL solving strategies.

For example, based on the MM theory, the lower-bounded implicit SPL
objective is monotonically decreasing during MM/AQS iteration, and
the convergence of the SPL algorithm can then be guaranteed.
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